VCAM-1-targeted core/shell nanoparticles for selective adhesion and delivery to endothelial cells with lipopolysaccharide-induced inflammation under shear flow and cellular magnetic resonance imaging in vitro

نویسندگان

  • Hong Yang
  • Fenglong Zhao
  • Ying Li
  • Mingming Xu
  • Li Li
  • Chunhui Wu
  • Hirokazu Miyoshi
  • Yiyao Liu
چکیده

Multifunctional nanomaterials with unique magnetic and luminescent properties have broad potential in biological applications. Because of the overexpression of vascular cell adhesion molecule-1 (VCAM-1) receptors in inflammatory endothelial cells as compared with normal endothelial cells, an anti-VCAM-1 monoclonal antibody can be used as a targeting ligand. Herein we describe the development of multifunctional core-shell Fe(3)O(4)@SiO2 nanoparticles with the ability to target inflammatory endothelial cells via VCAM-1, magnetism, and fluorescence imaging, with efficient magnetic resonance imaging contrast characteristics. Superparamagnetic iron oxide and fluorescein isothiocyanate (FITC) were loaded successfully inside the nanoparticle core and the silica shell, respectively, creating VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles that were characterized by scanning electron microscopy, transmission electron microscopy, fluorescence spectrometry, zeta potential assay, and fluorescence microscopy. The VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles typically had a diameter of 355 ± 37 nm, showed superparamagnetic behavior at room temperature, and cumulative and targeted adhesion to an inflammatory subline of human umbilical vein endothelial cells (HUVEC-CS) activated by lipopolysaccharide. Further, our data show that adhesion of VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles to inflammatory HUVEC-CS depended on both shear stress and duration of exposure to stress. Analysis of internalization into HUVEC-CS showed that the efficiency of delivery of VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles was also significantly greater than that of nontargeted Fe(3)O(4)@SiO2(FITC)-NH2 nanoparticles. Magnetic resonance images showed that the superparamagnetic iron oxide cores of the VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles could also act as a contrast agent for magnetic resonance imaging. Taken together, the cumulative adhesion and uptake potential of these VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles targeted to inflammatory endothelial cells could be used in the transfer of therapeutic drugs/genes into these cells or for diagnosis of vascular disease at the molecular and cellular levels in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesion of bio-functionalized ultrasound microbubbles to endothelial cells by targeting to vascular cell adhesion molecule-1 under shear flow

The expression of certain endothelial cell adhesion molecules is increased during endothelial dysfunction or inflammatory activation. This has led to the concept of using microbubbles for targeted molecular imaging or drug delivery. In this approach, microbubbles with a specific ligand to receptors expressed at the site of specific diseases are constructed. The present study aimed to engineer a...

متن کامل

Effect of Tribulus Terrestris L. on Expression of ICAM-1, VCAM-1, E-Selectin and Proteome Profile of Human Endothelial Cells In-Vitro

Background: Atherosclerosis is a chronic inflammation that interferes with blood arteries functions due to the accumulation of low density lipids and cholesterol. Objective: To investigate the effect of aqueous extract and saponin fraction of Tribulus terrestris L. (TT) on the proteome and expression of intracellular adhesion molecule-1 (ICAM-1), vascu...

متن کامل

Iron-gold (Fe2O3@Au) core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance

Introduction: Photothermal therapy (PTT) is a nanotechnology-assisted cancer hyperthermia approach in which the interaction between laser light and plasmonic nanoparticles generates a localized heating for thermoablation of the tumor. Recent efforts in the area of PTT follow two important aims: (i) exploitation of targeting strategies for preferential accumulation of plasmonic ...

متن کامل

MRI detection of endothelial cell inflammation using targeted superparamagnetic particles of iron oxide (SPIO)

BACKGROUND There is currently no clinical imaging technique available to assess the degree of inflammation associated with atherosclerotic plaques. This study aims to develop targeted superparamagnetic particles of iron oxide (SPIO) as a magnetic resonance imaging (MRI) probe for detecting inflamed endothelial cells. METHODS The in vitro study consists of the characterisation and detection of...

متن کامل

A New Theranostic System Based on Gd2O3 NPs coated Polycyclodextrin Functionalized Glucose for Molecular Magnetic Resonance Imaging (MMRI).

Introduction: Recent advances in nanoscience and biomedicine have attracted tremendous attention over the past decade to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions with a single platform to overcome the problems of conventional techniques for diagnosis and therapy with minimal toxicity.   Materials ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013